Current Issue : April-June Volume : 2025 Issue Number : 2 Articles : 5 Articles
Most rare diseases (RDs) encompass a diverse group of inherited disorders that affect millions of people worldwide. A significant proportion of these diseases are driven by functional haploinsufficiency, which is caused by pathogenic genetic variants. Currently, most treatments for RDs are limited to symptom management, emphasizing the need for therapies that directly address genetic deficiencies. Recent advancements in gene therapy, particularly with adeno-associated viruses (AAVs) and lipid nanoparticle-encapsulated messenger RNA (mRNA), have introduced promising therapeutic approaches. AAV vectors offer durable gene expression, extensive tissue tropism, and a safety profile that makes them a leading choice for gene delivery; however, limitations remain, including packaging size and immune response. In contrast, mRNA therapeutics, formulated in LNPs, facilitate transient protein expression without the risk of genomic integration, supporting repeated dosing and pharmacokinetic control, though with less long-term expression than AAVs. This review analyzes the latest developments in AAV and mRNA technologies for rare monogenic disorders, focusing on preclinical and clinical outcomes, vector design, and delivery challenges. We also address key regulatory and immunological considerations impacting therapeutic success. Together, these advancements in AAV and mRNA technology underscore a new era in RD treatment, providing innovative tools to target the genetic root of these diseases and expanding therapeutic approaches for patients who currently face limited medical options....
Barth Syndrome (BTHS) is an early onset, lethal X-linked disorder caused by a mutation in tafazzin (TAFAZZIN), a mitochondrial acyltransferase that remodels monolysocardiolipin (MLCL) to mature cardiolipin (CL) and is essential for normal mitochondrial, cardiac, and skeletal muscle function. Current gene therapies in preclinical development require high levels of transduction. We tested whether TAFAZZIN gene therapy could be enhanced with the addition of a cell-penetrating peptide, penetratin (Antp). We found that TAFAZZIN-Antp was more effective than TAFAZZIN at preventing the development of pathological cardiac hypertrophy and heart failure. These findings indicate that a cell-penetrating peptide enhances gene therapy for BTHS....
Obesity is a significant metabolic disorder associated with excessive fat accumulation and insulin resistance. In this study, we explored a gene therapy approach to treat obesity in agouti mice using adeno-associated viruses (AAVs) carrying PRDM16, FoxP4, or Follistatin (FST) genes, which are known to promote the browning of white adipose tissue. Mice treated with AAVs encoding PRDM16, FoxP4, or FST genes showed a reduction in body weight (10–14%) within the first three weeks after administration, compared to the control groups. A lipidomic analysis of the adipose tissue revealed a dramatic reduction in triacylglycerol (TAG) species with low carbon numbers (40–54 acyl carbons) in treated mice....
Introduction: Nadofaragene firadenovec (Ad-IFNa/Syn3) is now approved for BCG-unresponsive bladder cancer (BLCA). IFNa is a pleiotropic cytokine that causes direct tumor cell killing via TRAIL-mediated apoptosis, angiogenesis inhibition, and activation of the innate and adaptive immune system. We established an immunocompetent murine BLCA model to study the effects of murine adenoviral IFNa (muAd-Ifna) gene therapy on cancer cells and the tumor microenvironment using a novel murine equivalent of Nadofaragene firadenovec (muAd-Ifna). Methods: Tumors were induced by instilling MB49 cells into the bladders of mice; luciferase imaging confirmed tumor development. Mice were treated with adenovirus control (Ad-Ctrl; empty vector), or muAd-Ifna (3x1011 VP/mL), and survival analysis was performed. For single-cell sequencing (scRNAseq) analysis (72h), bladders were harvested and treated with collagenase/hyaluronidase and TrypLE for cell dissociation. Single cells were suspended in PBS/1% FBS buffer; viability was assessed with Vicell cell counter. scRNAseq analysis was performed using 10X genomics 3’ sequencing. Raw RNAseq data were pre-processed using Cell Ranger single-cell software. Seurat (R package) was used to normalize and cluster the scRNA data. Pooled differential gene expression analysis in specific cell clusters was performed with DESeq2. Results: We identified 16 cell clusters based on marker expression which were grouped into epithelial (tumor), uroplakin-enriched, endothelial, T-cells, neutrophils, and macrophage clusters. Top differentially expressed genes between muAd-Ifna and Ad-Ctrl were identified. Within the specific cell clusters, IPA analysis revealed significant differences between muAd-Ifna and control. IFNa signaling and hypercytokinemia/chemokinemia were upregulated in all clusters. Cell death pathways were upregulated in tumor and endothelial clusters. T-cells demonstrated upregulation of the immunogenic cell death signaling pathway and a decrease in the Th2 pathway genes. Macrophages showed upregulation of PD1/ PD-L1 pathways along with downregulation of macrophage activation pathways (alternate and classical). Multiplex immunofluorescence confirmed increased infiltration with macrophages in muAd-Ifna treated tumors compared to controls. PD1/PD-L1 expression was reduced at 72h. Discussion: This single-cell analysis builds upon our understanding of the impact of Ad-IFNa on tumor cells and other compartments of the microenvironment. These data will help identify mechanisms to improve patient selection and therapeutic efficacy of Nadofaragene firadenovec....
Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, large capacity, and high transduction efficiency, making them widely used as oncolytic vectors and for creating vector-based vaccines. This review also considers the application of adenoviral vectors in oncolytic virotherapy and gene therapy for inherited diseases, analyzing strategies to enhance their efficacy and specificity. However, despite significant progress in this field, the use of adenoviral vectors is limited by their high immunogenicity, low specificity to certain cell types, and limited duration of transgene expression. Various strategies and technologies aimed at improving the characteristics of adenoviral vectors are being developed to overcome these limitations. Significant attention is being paid to the creation of tissue-specific promoters, which allow for the controlled expression of transgenes, as well as capsid modifications that enhance tropism to target cells, which also play a key role in reducing immunogenicity and increasing the efficiency of gene delivery. This review focuses on modern approaches to adenoviral vector modifications made to enhance their effectiveness in gene therapy, analyzing the current achievements, challenges, and prospects for applying these technologies in clinical practice, as well as identifying future research directions necessary for successful clinical implementation....
Loading....