Current Issue : January-March Volume : 2025 Issue Number : 1 Articles : 5 Articles
Severe protein C deficiency (SPCD) is a rare inherited thrombotic disease associated with high morbidity and mortality. In the current study, we established a viable murine model of SPCD, enabling preclinical gene therapy studies. By creating SPCD mice with severe hemophilia A (PROC−/−/F8−), the multi-month survival of SPCD mice enabled the exploration of recombinant adeno-associated viral vector-PC (rAAV8-PC) gene therapy (GT). rAAV8- PC (1012 vg/kg of AAV8- PC) was injected via the tail vein into 6–8-week-old PROC−/−/F8- mice. Their plasma PC antigen levels (median of 714 ng/mL, range 166–2488 ng/mL) and activity (303.5 ± 59%) significantly increased to the normal range after GT compared to untreated control animals. PC’s presence in the liver after GT was also confirmed by immunofluorescence staining. Our translational research results provide the first proof of concept that an infusion of rAAV8-PC increases PC antigen and activity in mice and may contribute to future GT in SPCD. Further basic research of SPCD mice with prolonged survival due to the rebalancing of this disorder using severe hemophilia A may provide essential data regarding PC’s contribution to specific tissues’ development, local PC generation, and its regulation in inflammatory conditions....
Beta thalassemia is an inherited blood disorder that results in inefficient erythropoiesis due to genetic mutation that leads to the reduction or absence of the hemoglobin beta-globulin protein. Approximately 8.5% of UAE residents suffer from β-thalassemia, a significant health and financial problem. The treatment options available for β-Thalassemia major are limited and associated with a wide range of complications. β-thalassemia gene therapy is emerging as a potential novel treatment option that eliminates the complications caused by the current long-term treatment modalities and the associated economic burden. This paper reviews the scientific literature related to emerging gene therapy for β-Thalassemia by analyzing all the articles published from January 2010 to December 2023 in the English language on Databases like PubMed, Scopus, ProQuest, and CINAHL. The use of gene therapy has demonstrated promising outcomes for a permanent cure of β-Thalassemia. To conclude, gene therapy is an innovative solution. It demonstrates a promising future, but does come with its own setbacks and is something that must be tackled in order to revolutionize it in the medical world. FDA-approved ZYNTEGLO is a potentially one-time curative treatment for β-Thalassemia. Although cutting-edge, its use is limited because of the high cost—a price of USD 2.8 million per patient....
Adeno-associated viruses (AAV) are widely used as delivery vectors in clinical trials for in vivo gene therapy due to their unique features. Göttingen minipigs are a well-established animal model for several diseases and can be used for the efficacy and safety testing of AAV-based gene therapy. Pre-existing antibodies against AAV may influence the results of testing and, therefore, the animals should be tested for the presence of antibodies against relevant AAV serotypes. The detection of AAVs in pigs may be also important for the virus safety of xenotransplantation. In this study, we screened Göttingen minipigs from Ellegaard Göttingen Minipigs A/S, Denmark, and Marshall BioResources, USA, for antibodies against AAV1, AAV2, AAV6, AAV9 serotypes. Of the 20 animals tested, 18 had no neutralizing antibodies for all AAVs tested, none had antibodies against AAV9, only one had antibodies against AAV6, and the titers of antibodies against AAV1 and AAV2 were less than 1:100, with two exceptions. For total binding IgG, more individuals showed positivity for all the tested serotypes but, in general, the levels were low or zero. Three animals had no antibodies at all against the AAVs tested. Therefore, Göttingen minipigs could be considered an attractive animal model for gene therapy studies. Since some animals were negative for all AAVs tested, these may be selected and used as donor animals for xenotransplantation....
While traditional combination anticancer treatments have shown promising results, there remains significant interest in developing innovative methods to enhance and integrate chemotherapy and immunotherapy. This study introduces a recombinant fusion protein-based cell surface modification system that synergistically combines chemotherapy and immunotherapy into a single-targeted chemo-immunotherapy approach. A cell surface-modified protein composed of an antibody-specific binding domain and a cell-penetrating domain rapidly converts immune cells into chemo-immuno therapeutics by binding to antibodies on the surface of immune cells. Utilizing a non-invasive, nontoxic approach free of chemical modifications and binding, our system homogeneously transforms immune cells by transiently introducing targeted cytotoxic drugs into them. The surface-engineered immune cells loaded with antibody–drug conjugates (ADCs) significantly inhibit the growth of target tumors and enhance the targeted elimination of cancer cells. Therefore, NK cells modified by the cell surface-modified protein to incorporate ADCs could be expected to achieve the combined effects of targeted cancer cell recognition, chemotherapy, and immunotherapy, thereby enhancing their therapeutic efficacy against cancer. This strategy allows for the efficient and rapid preparation of advanced chemo-immuno therapeutics to treat various types of cancer and provides significant potential to improve the efficacy of cancer treatment....
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of chemotherapy drugs and genetic drugs presents a challenge in co-delivering these agents. In this study, nanoparticles loaded with PTX were prepared using the biodegradable polymer material poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). These nanoparticles were surface-modified with target proteins (Affibody molecules) and RALA cationic peptides to create core-shell structured microspheres with targeted and cationic functionalization. A three-drug co-delivery system (PTX@PHBHHx-ARP/siRNAGEM) were developed by electrostatically adsorbing siRNA chains containing GEM onto the microsphere surface. The encapsulation efficiency of PTX in the nanodrug was found to be 81.02%, with a drug loading of 5.09%. The chemogene adsorption capacity of siRNAGEM was determined to be 97.3%. Morphological and size characterization of the nanodrug revealed that PTX@PHBHHx-ARP/siRNAGEM is a rough-surfaced microsphere with a particle size of approximately 150 nm. This nanodrug exhibited targeting capabilities toward BT474 cells with HER2 overexpression while showing limited targeting ability toward MCF-7 cells with low HER2 expression. Results from the MTT assay demonstrated that PTX@PHBHHx-ARP/siRNAGEM exhibits high cytotoxicity and excellent combination therapy efficacy compared to physically mixed PTX/GEM/siRNA. Additionally,Western blot analysis confirmed that siRNA-mediated reduction of Bcl-2 expression significantly enhanced cell apoptosis mediated by PTX or GEM in tumor cells, thereby increasing cell sensitivity to PTX and GEM. This study presents a novel targeted nanosystem for the co-delivery of chemotherapy drugs and genetic drugs....
Loading....